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Abstract

Page’s (1963) L statistic tests the agreement of a single group of
judges with an a priori ordering of alternative treatients. This
paper extends the two group test developed by Leitner & Dayton
(1976) to analyze the difference in consensus between two unequally
sized groups of judges. Exact critical values are tabled for small
numbers of treatments and judges; a unit normal approximation
(zIB)is developed for larger samples. A brief computation example
couched in terms of an educational study is also provided. Analysis
of the two-tailed unit normal approximation shows that disparity
between sample sizes often leads to underestimating the probability
of committing a Type I error; however, as the number of treatments
increases the fit becomes better. This test in comparison to two
parametric competitors ia a 2 x 4 mixed design made fewer Type I
errors when data were sampled from the normal, uniform, and
exponential distribution, but it was also shown to be generally more
conservative. Also in contrast to the parametric tests, the z[R is not
severely affected by the unequally sized groups having
heterogeneous variances. Furthermore, the proposed test shows
adequate power in conditions that do not favor parametric tests (i.e.,
interval level data; normally distributed variables).
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Page's L test provides a nonparametric statistical index for the
agreement of a single group of n rankings to a set of k alternatives
(i.e., treatments, objects) with the following null hypothesis;

Ho: T1=T2...=Tk (1)
where Tjrepresents the mean for the jth treatment. The most
general alternative hypothesis is that at least one pair among the k
alternatives (Tj) is not equal. However, in many experiments an a
priori ordered outcome of the k treatments can be expected from
theoretical considerations and is thus of scientific interest. In such a
case, the L test can be used and the alternative hypothesis can be
phrased as such:

Ha: T1< T2<...<Tk (2)
with at least one strict inequality. Thus, the L test was specifically
designed for use with data measured at or reduced to an ordinal
level. This test of ordered hypotheses for multiple treatments is
based on the linear contribution each ranking makes to the
treatment sum of squares (Page, 1963). It has also been shown to be
equivalent to the average Spearman rank-order correlation between
the a priori ordering and the group of n rankings (Lyer! -, 1952; Page,
1963). That is, the average of the n correlations between individual
rankings and the a priori ordering is mathematically related to L.
Furthermore, the L test has parametric analogs in experimental
designs such as the randomized block design (Azzam, Awad, & Sarie,
1987; Hollander, 1967) and the repeated measures or split-plot
design (Siegel & Castellan, 1988). Thus, the L test is easily computed,
but few extensions to more complicated designs have been
developed. Therefore, this procedure has been of questionable
versatility, although it has been shown to be extremely robust
because of its relationship to the Spearman coefficient (Page, 1963).
Hollander (1967) showed that the asymptotic power of Page’s L test
compared to the t-test is .714 for k=3 and .955 as k approaches
infinity.

In practice, Page's L test is used to statistically determine
whether one group of n judges agrees with an a priori ordering of
treatments. For example, this test could be used to examine whether
four school board members (n=4) rank the importance of five
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educational objectives (k=5) as defined by Bloom's Taxonomy of
Educational Objectives (i.e., Bloom & Madaus, 1981). In Table 1, the
hypothetical data are cast into two-way tables having n rows and k
columns. Separately for each row (school board member), the 5
objectives are ranked. Each column of treatments (Tj are summed
and weighted by the order of the treatment. Then these weighted
components are summed to form L which can be represented with
the following formula:
k n
L-Yiy T
j=1 j=1 (3).
Thus from the data in Table 1 (Panel A), L = 217 which is significant
with p <.001 (see Page, 1963 for tables). Therefore, the nulil
hypothesis stating that the mean ranking of the T{'s are equal across
the k objectives was rejected and the aiternative hypothesis stating
that the school board members ranked at least one of the objectives
in the a priori ordering was accepted.

If a second group, say concerned parents, were considered; two
questions can be asked. First, to what degree does the consensus of
the second group of judges (parents) agree with the a priori ranking
of objectives? Second, do the two groups differ in the degree of their
consensus with the ordered hypotheses. The first question can be
answered by Page's L test applied to the second group of judges.
Table 1 (Panel B) shows another hypothetical example using 4
parents ranking of the 5 objectives. The result (L = 185) was not
significant at the .05 alpha level. Thus, there is not sufficient
evidence to reject the null hypothesis that the 5 objectives were
ranked equally.

The second question can be answered by an extension of Page's
L, the LD test (Leitner & Dayton, 1976) which is defined as the
absolute value of the differences between L's for the two groups with
the following null hypothesis:

Ho: L1-12=0 orHo: Lp=0. (4)
The analysis for these two groups yields a results, LD = (217 - 185) =
32, significant at the .05 alpha level (see Leitner & Dayton, 1976 for
. tables). Thus, the two groups (school board members and parents)
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significantly differ in their degree of consensus to the a priori
ordering of objectives as defined by Bloom's taxonomy. Furthermore,
since school board members have a larger L statistic than do parents,
they also have a significantly higher amount of agreement to the
hypothesized ordering than do the parents. In certain situations, the
LD test of no differences in L statistics can be viewed as analogous to
testing the linear trend interaction in a 2 by k mixed ANOVA. This
test also assumes that LD becomes large up to a maximum value
when the groups disagree and that it is symmetric around zero.
Thus, although Leitner and Dayton defined the LD test as an absolute
value, directional tests are possible. However, the symmetric
conditions for the null hypothesis do not hold for unequal n's, which
limits analyses to experiments with groups of equal sample size. In
the example given, school board members, as opposed to concerned
parents, are relatively rare and would have smaller sample sizes in
most replications of this hypothetical study. Moreover, equal sample
sizes are uncommon in most research studies. In the present
example, if one parent with a ranking of (5,4,3,2,1) and thus an
individual L equal to 37 was added, the resultant L would equal 220
and LD would have an absolute value equal to 3 seemingly not of
sufficient magnitude to be "significant” in comparison to the previous
LD. Yet, there appears to be quite a disparity between the priorities
of the school board members and the parents although the Lp does
not reflect this. To elucidate, if six school board members were to
exactly agree with the theoretical a priori ordering of the 5
objectives, the resultant L would be 330. If eight concerned parents
were also to exactly agree with these ordered hypotheses, the result
would be an L = 440, Thus, LD would equal 110 although every
judge, regardless of background, agreed with the hypothesized
ordering although there should be no differences detected. Thus,
larger groups would have larger L's by virtue of size rather than
linearity of ranks. One way to circumvent this problem is to scale
the two L's to the same metric. In the present paper, it is proposed
to use an "averaged L" to test differences with the following null
hypothesis: o s
Ho: Lg =|L; - [2|=0 (5)
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_..1 _ .]_:‘_l__ f L?_
where, n; and n; |
Page (1963) showed that the L has the following mean:

E(L) =pL= nk_(ki)z
4 (6)
In scaling this L with a division by n the expected value for the
"averaged L" is as follows:
B(D) - XkD)
4 ® (7).
Thus, the following can be elaborated:
E(Lg) = E(L1 - Ty) = nik(k+1)? _mpk(k+1)? _ o
4n1 4112 (8).
From the third example, LB = 330/6 - 440/8 =55 - 55 =0, Thus,
there are no differences in the groups' rankings although their
sample sizes differ. From the second example (Table 1, Panel C), LB =
217/4 - 220/5 = 10.25, indicating that differences do indeed exist.
More importantly, this formulation holds for both equal and unequal
sample sizes and is symmetric around zero.

In addition, both Page (1963) and Leitner and Dayton (1976)
developed unit normal approximations for larger samples. Page
(1963) showed that the L test has the following variance;

20y _ nko(k+1)%(k-1)
o’(L) =
144 (9).
Therefore, the unit normal approximation of the L test is the sample
L minus the expected value of L (Eq. 1.6) and divided by the
variance of L (Eq. 1.9) which reduces to:
, _ 12L - 3nk(k+1)?
k(k+1) 4/n(k-1) (10)
l'or the Leitner and Dayton LD test, the two separate Ls have the
same expected value and therefore cancel out. Thus, the absolute
difference between the L's is divided by a denominator based on the
standard deviation of the differences in L's. Assuming the two
groups to be independent, LD should have a variance equal to oZ(L1)
+ o2 (L2) which, with equal number of judges in each group, becomes

+




Two Group Test for Ordered Alternatves
5
two times the variance defined in equation 12. Thus the LD can be
formulated as:
_|L1 - L] 72
k(k+1) n(k-1) (11).
As previously mentioned, the development of an analogous test for
unequal sample sizes the difference between L's was redefined in
terms of L1/n1 and L2/n2, Thus, LB has the following variance:

a*(L) = o(L1 - L2) = o*(L1) + o(L2) (12). a\\

Using equation 1.9 and the property of multiplying a constant to the
variance of a set yields:
(L) = nik?(k+1)%(k-1) _ Ki(k+1)2(k-1)
144 n? 144 ny

(13).
Thus for two unequally sized groups, oZ(LB) reduces to:
2 2
210) = T, -y = _1_+_1_[k (k+1) (k-l)]
o“(Lg) (L1 -L2) (n1 nz) Tad (14)
and the unit normal approximation is:
) 7= 12|1; - |
N LB-.-
k(k+1)4/ (k-1)(L-+-L-
(ke1)4/ (k- D+ as)

which is equivalent to the Leitnmer and Dayton test (Eq. 1.11) when
the sample sizes are equal. In the present example (Table 1
including Panel C), the result, z] B = 3.06, is statistically significant at
the .05 alpha level, assuming a unit normal approximation.

Tests Related to L

Since Page’s L test an order2d hypothesis of monotonic trends in
data, it also tests the linear trend in ranks. Given linear effects, the L
test is also analogous to regression analyses. Since most rank tests
are considered to be alternatives to parametric procedures based on
the General Linear Model, there are several nonparametric tests
related to Page’s L test.

Single Group Tests. Similar to the k by n layout analyzed by
Page’s L, the Friedman two-way ANOVA by ranks (Friedman, 1937)
tests a null hypothesis that the k matched samples (or repeated
nmeasures) have been drawn from the same population. The

oo
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alternative hypothesis, however, is more general than that of the L
test and states that at least one pair among the k repeated measures
has different medians. The Friedman statistic is based on Kendall’s
coefficient of concordance (Kendall & Babbington-Smith, 1937) which
expresses the degree of association among k sets of rankings for n
judges. The Friedman test is formulated as such:

K n 5
122 Z (Ty)

X% = |3l - 3n(k+1)
nkk+1) (16),

where Tj is the individual rank given from 1 to k for ith judges.
This statistic approximates a chi-squared distribution with k-1
degrees of freedom and differs from Page’s L in that the column
totals are squared rather than multiplied by some a priori coefficient
ranging from 1 to k (see Eq. 1.3 for comparison). Thus the Friedman

2
XF, used for testing the significance of the differences among
treatments, is closely related to an omnibus F-tests of the reatment
(repeated measures) sum of squares (SSt) in the parametric split plot

design. Indeed, it can be shown that Xl2= is equivalent to:
X% 1288y
k (k+1) (17).
Similarly, the square of the L test unit normal approximation (Eq.
1.10 squared) can be proved equivalent to:
2% = Xt = —12__ (linear contribution of SS7)
L=4AL T
kik+1) (18).
Given this restriction of linearity across the k alternatives, the L test
is related to correlation and regression (Page, 1965). Lyerly (1952)
proposed a statistic called average rho, T, which was equivalent to
the average Spearman rank-order correlation in a set of n judges.
The equivalence of Page’s L to the Lyerly and Spearman statistics can

be demonstrated. Page (1963) showed that L was equivalent to T:
F=_ 121  3(k+1)
nk(k>1) (k1) (19)
One variant of Page’s L test has been proposed in order to better

separate the rankings in middle of the distribution (Azzam et al.,

()
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1987). The B statistic was proposed because certain rankings which
are distinct from each other receive the same individual L. For
example with k=4, a ranking of {1, 3, 4, 2] and a ranking of [2, 3, 1, 4]
both receive an individual L of 27. Thus, although the rating process
that underlies these rankings may be quite different, Page’s L does
not distinguish between the two. Therefore, squaring the a priori
ordering coefficient was proposed such that:
k n
B=Y iy T
=1 J=1 (20)
This test has been shown to be generally as powerful as Page’s L
(Azzam et al., 1987), but it has a rather complicated unit normal
approximation. Furthermore, the B statistic involves squaring the
ordering coefficient; thus, agreement to the latter alternatives is
given more weight and is interpreted as more important than
agre~ment to the first alternatives. Because of the recency of this
test along with the implicit weightings and differentiations that are
made, its efficacy in practical situations has not been assessed.
Hollander (1967) proposed a rank procedure for testing ordered
alternatives which has since been classified as an A-type test
because the rankings are taken among blocks. This differs from
Page’s L, a W-type test, in which the rankings are taken within a
block (Pirie, 1974). This A-type procedure involves ranking the
differences among blocks then summing the ranks to form the Y
statistic. Hollander’s Y is not distribution free, but it is
asymptotically normal with the following expected value and
variance:
_ k(k-I)n(n+1)
W ==—7 (21)
S2(Y) = n(n+1){(2n+1)(3k-2)p8(F)

144 (22)
where pS(F) is a factor derived from the sampled distribution, F. The
values for this factor is reported in Hollander (1967). The
asymptotic efficiency of Y relative to the t-test is greater than .864
for all distribution functions, F, and all numbers of alternatives (k).
~ When F is normal, the Asymptotic Relative Efficiency (ARE) with
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respect to the t-test range from ,963 to an upper limit of 989 as k
approaches infinity. Therefore, Y outperforms Page’s L under these
conditions (Hollander, 1967). However, when F is a uniform or
exponential distribution function, ARE values are at least as likely to
favor Page’s L as Hollander's Y. In fact, which test performs better
apparently depends on the sampled distribution and the values of k
and n. In any case, the differences in power cannot be expected to
be great. Thus, Page’s L and W-type tests, in general, are favored
over Hollander’s Y (and other A-type tests) specifically because W-
type tests are: a). distribution free; b). more able to control Type I
error rates; and c). easily computed (Pirie, 1974).

Multiple Group Tests. jonkheere (1954) proposed a test of
ordered alternatives for k independent samples. This statistic tests
the null hypothesis that the medians are the same across groups
(samples). The alternative hypotheses is that the medians are
ordered in magnitude with at least one strict inequality. This
procedure uses a Mann-Whitney count method and is based on the
average Kendall rank-order correlation (Kendall’s tau} between the
observed ranking of the ith judge and the a priori ordering.
Hollander (1967) showed that the asymptotic power of Jonkheere’s
test as compared to the g-test is similar to that of Page’s L with an
ARE of .694 for k=3 and as an ARE of .955 as k approaches infinity.
Furthermore, since Jonkheere’s test is based on Kendall’s rank-order
coefficient, Page’s L can be shown to be more powerful because of
the L’s within-subject design. As compared to Kendall's tau, Page’s L

has an ARE equal to:

ARE(LIx) = k(Zk +35)
2(k+1)%

which reaches its maximum at k=5 and never falls below zero.

The Schucany and Frawley (1973) model is based on Page’s L and
is designed to test differential concordance in terms of the
correlation between ranks of k alternatives assigned by two
independent groups of judges. The statistic takes the product of the
two separate rankings totaled over judges and then sums over the k
alternatives:

1i
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K
S=3 RyRy
j=1 (23).
A unit normal approximation was formulated as such:
5 = 128 - 3nimpk(kr 1)*
k(k+1)#ninz(k-1) (24).
Unilike the test presently proposed which has a null hypothesis of no
between group differences in L, the Schucany and Frawley model has
been criticized because it tests the null hypothesis that there is no
concordance (Serlin & Marascuilo, 1983). Thus, a between group
concordance of disconcordance with the a priori ordering is a possible
result. Serlin and Marascuilo (1983) point out, “It is hard to conceive
of concordance between groups when there is no evidence that there
is concordance within groups” (p. 194).

Hollander and Sethuraman (1978) have also questioned the
Schucany and Frawley model because it tests for positive rank-order
correlation in the mean ranks as an alternative. As an alternative,
Hollander and Sethuraman provided a two group procedure which
tests the identity of mean ranks across the k alternatives as the null
hypothesis. Serlin and Marascuilo (1983) extended this method for
multi-group situations and also developed planned and post-hoc
comparison procedures. These multiple comparison procedures are
capable of testing group differences at each of the k levels of
treatment alternatives and are thus analogous to simple main effects
in the ANOVA. Although the computation of these comparison
procedures are relatively simple, the omnibus test for the Hollander
and Sethuraman as well as the Serlin and Marascuilo formulations
are based on multivariate procedures and are rather complex.

Since Page's L is a test of the linearity of ranks, power analyses
will proceed by generating rankings around different linear and
monotonic effects. Then a comparison of the LB tests to the mixed
design ANOVA with linear and “double-ends” monotonic (Gaito,
1965) interaction contrasts will be completed. The relative power of
the LB tests are not expected to exceed the parametric tests in many
cases because within rankirg and within-group variances will
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initally be kept homogeneous. However, the well-known effects of
violating the homogeneity of variance assumption in combination
with unequal sample sizes (Glass, Peckham, & Sanders, 1972) could
become an issue. This is possible since nonparametric analyses have
shown to be more powerful {or robust) under such violations
(Boneau, 1962).

Methods

The distributions of L were generated for three alternatives
(k=3) from a sample size of 2 (n=2) to as large as a sample size of
n=10. For k=4, the generated distributions of L ranged from n=2 to
n=8 and for k=5, from n=2 to n=6. For the two group situation all
possible pairwise differences in L’s (LB distributions) were generated
within a given number of alternatives. The critical values at the .10,
.05, and .01 alpha levels were determined by finding the point in the
LB distribution that did not exceed the 90th, 95th or 99th percentile,
respectively. These critical values were tabled along with the p-
value derived from the z1B to show the approximation of this
statistic. To demonstrate the fit of the two-tailed unit normal
approximation (z]B), the ogive of the actual LB distributions could be
compared the ogive of theoretical distribution it is supposed to
approximate (i.e., xz(l)) and subsequently the Kolmogorov-Smirnov
(K-S) test could be used to test the fit of these statistic. However, it
is important to note that the sample size for a given distribution is
kIN, where N is the total sample size, so that the K-S test will be
highly sensitive to minor deviations at any point in the distribution.
Furthermore, in using the K-S test, fit as a null hypothesis can only
be falsified and thus retention of such a null hypothesis does not
prove the approximation of the statistic. Moreover, since significance
testing in general uses cumulative proportions of theoretical or actual
distributions to establish critical regions for the rejection of null
hypotheses, the fit at the upper end of the ogives is of more practical
interest. Therefore, to examine the fit of these statistics at the upper
end in context with the disparity of sample sizes, the difference
between the actual cumulative proportion above the LR critical value
and the p-value of the approximate statistic (z[B) at the .10, .05, and
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.01 alpha levels are plotted as a function of the ratio of the largest to
total sample size.

To examine the effects of violating the parametric normality
assumption on the Type I error rate, data for 4 alternatives with no
difference between the L’s of two equally sized groups of n=8 (no
trend interaction for the ANOVA) were randomly generated from a
normal, uniform and exponential distribution and replicated 1,000
times. The rejection rates of the z[8 and the ANOVA are compared at
the .041 alpha level since this is the actual proportin above the
critical value for k=4 and equal n’s of 8 (see Table 3). The cell
parameters were [2, 3, 4, 1] for both groups so that there is no _
expected interaction and both groups have the same expected value
for L, E(L)=24. In sampling from the normal distribution, data were
generated around these cell parameters with equal cell variances,
o?(wcy=4. Using the same parameter seeds for generating the
uniformly and exponentially distributed data, the expected values of
the cell parameters change only by a constant (i.e., E(x) + 1/2 for the
uniform distribution and E(x) + o) for the exponential distribution)
so that the expected ranks, E(L), and the expected differences in
means are --ot changed. In using the exponential random generator
the variance is not affected, but the distribution becomes positively
skewed, while the variance for the uniform distribution is changed so
that the within cell variance is 0% g)/12 (i.e., 3 in this case) for the
uniform distribution (Freund & Walpole, 1987).

To examine the effects of heterogeneity of variance with unequal
sample sizes on the Type I error rate at the three levels of
alternatives, normally distributed data with no differences in the 2
L’s (same as the previous parameters) were randomly generated at
differing ratios of variances and sample sizes. With the parameter
average within-cell variance held constant at 9, the within-cell
variance ratio of Group 1 to Group 2 are examined at .2 (3/15), .33
(4.5/13.5), 1 (9/9), 3 (13.5/4,5), and 5 (15/3). With total sample size
held constant at 20, largest (Group 1) to total sample size ratios are
examined at .5 (n; =10; n»=10), .7 (n; =14; n=6), .8 (n) =16; n=4), and
9 (ny=18; n=2). All levels of the sample size and variance ratios
were crossed and 1,000 replications in each cell were performed for

b
£
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both the z]B and the ANOVA. For the .05 alpha level, deviations
from 50 (5%) rejections will indicate the “conservative” or “liberal”
nature resultant from the violatdons of this assumption.

To analyze power, the two group test for 4 alternatives was
compared to linear polynomial and “double-ends” monotonic (Gaito,
1965) interaction contrasts with a 2 x 4 mixed ANOVA. Two basic
situations are presented. In one case cell means were randomly
generated around the following equally spaced parameters which is
analogous to having interval level data:

Group 1 (1, 3,4,2] E(L)=27 Equally Spaced
Group 2 (3, .2, 4,1} E(L)=23 Parameters

In this case the rankings of the data and the original data itself
would yield the same results in any parametric procedure since with
equally spaced parameters rankings are simply a linear
wransformation of the data. Butin ranking a set of alternatives, the
process underlying this ranking procedure may not be based on
equally spaced parameters or the data simply may not be measured
at an interval level. Therefore, data with the same expected values
of L were generated around the following unequally spaced
parameters:

Group 1 [5,%}10, i2,7] E(L)=27  Unequally Spaced
Group 2 [10,9, 21,8} E(L)=23 Parameters

Thus, the expected value of differences in L’s are same in both case,
E(LB)=4. In both cases, the distributions are sampled from the
normal, uniform, and exponential distributions, while the respective
cell parameters are held constant. The effects of increased sample
size on power are examine by using n=4, n=8, n=16, and n=32. In the
analysis of these effects when the data are sampled from a normal
distribution, o’ we) was held constant at 7.51 for the equally spaced
parameters and at 1.55 for the unequally spaced parameters. These
two values were used because a o(,c)=7.55 gives the linear

" interaction contrast for the equally spaced parameters with an n=4 a

Lo
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Non-Centrality Parameter .NCP) equal to the test’s .05 critical value,
NCP(1,18)=4.41. A 0%y =1.55 does the same for the monotonic
interaction contrast of the unequally spaced parameters. In keeping
the same generation seeds, the uniformly distributed equally spaced
parameters have o?,)=.625, while for the unequally spaced
parameters o2 g,c)=.129.

Results

Tables 2, 3, and 4 show the exact critical values, the actual
cumulative proportion above the critical value, and the p-values of
the unit normal approximate at nominal alpha ievels of ,10, .05, and
.01 for 3, 4, and S alternatives, respectively. To examine the fit of
the large sample approximate (z1B), the difference betweer. the
actual cumulative proportion above the critical value and the p-value
of the approximate statistic at the .10, .05, .01 alpha levels are
piotted as a function of the ratio of the largest to total sample size.
Figure 1 (first panel) shows that for 3 aiternatives the values are all
negative ranging from about -.02 to O at the .10 alpha level which is
reflected by the theoretical distribution having higher ordinates than
the actual distributions. At the .05 level, the fit becomes better with
both positive and negative values basically centered around zero. At
the .01 level, the values are positive ranging from O to .01 which is
reflected by the actual distribution going akove the theoretical Xz(i).
The same basic results can be seen for 4 and S alternatives (Fig. 1;
second and third panels), but the differences between the theoretical
and actual cumulative proportions are smaller, demonsirating that
the approximation is closer as the number of alternatives increases.
Another interesting effect is the linear relationship between these
distributional differences and sample size ratio most notable at .05
and .01 alpha level for k=3. Although the approximation of the
distribution can be used to describe these effects, it can also be
explained in terms of the well-known heterogeneity of variance
effects. That is, in the formuia for within-cell variance (Eq. 13)
larger samples by definition have smaller variances. Also since the
distributional differences were calculated as the actual cumulative
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proportion minus the theoretical cumulative proportion, positive
values mean that the p-value calculated from z]B is less than the
actual cumulative proportion below that particular difference in
mean L’s which in practice would lead to more rejections. Therefore,
positive values can be viewed as indicating more “liberal” tests while
negative values reflect more “conservative” rates of rejection. Thus
the positive relationship between the distributional differences and
sample size ratio at these particular alpha levels indicates that as the
disparity between group sample sizes increase and the larger sample
by definition has less within cell variance, the test becomes more
“liberal” which is consistent with the effects of heterogeneity of
variance.

For a 2 x 4 design (collapsed to the LB test for 4 alternatives),
Figure 2 shows the proporticas of rejections under null conditions for
LB and for linear and monotonic interactions contrasts when the data
are sampled from the normal, uniform, and exponential distributions.
Across all conditions, LB commits fewer Type I errors than either of
the parametric tests, but it also makes fewer than the expected
number of false positives. Thus, the test is somewhat “conservative”.
When sampled from the normal distribution and especially the
uniform distribution, the results reflect the conservative nature of
LB. By contrast the three different tests show similar results when
the data are sampled from the exponential distribution.

Figure 3 replicates the effects of heterogeneity of variance in
combination with disparate sample sizes and shows that z[B is
robust to such violations. In Figure 3, the horizontal dashed line is at
the alpha level of .05. Major deviations from this line show the
effects of unequal samples sizes and variances. The vertical dashed
line in each panel is at 1.0 where the within-cell variances are equsz..
for the two groups and unequal cell frequencies should have minor
effects. In the upper left panel of Figure 3, the largest to total
sample size ratio is .5, the situation in which the sample sizes are
equal. At this point all three tests keep the nominal alpha level of
.05, but as expected, as the largest to total sample size ratio increases
heterogeneity of variance affects the rejection rates of the
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parametric tests. For the parametric tests, when the larger sample
has the smaller variance, the tests are more liberal and the Type I
error rate increases to as high as 33% (Fig. 3, lower right panel).
When the large sample has the smaller variance the rejection rates of
the parametric tests approach zero. For, z]B, however, the rejection
rates range from .075 to .01 which given the conservative nature of
this test falls within sampling error. Thus, the proposed test are
robust to the violation of the heterogeneity of variance assumption in
normally distributed data.

Figure 4 shows the power of z] B relative to linear and monotonic
interaction contrasts under various conditions. As expected, since
equally spaced parameters are analogous to having interval level
data, the parametric tests dominate, especially when the data are
sample from the normal distribution. However, given a moderate
sample (cell sizes of n = 16) drawn from either the uniform or
exponential distribution, the z1B has comparable power. When
parameters are unequally spaced, linear contrasts cannot compete
for two reasons. If the data are not interval level, linear test are not
designed to readily detect their effects;however, if the data are
interval level, but the parameters are not equally spaced, the use of
linear test is a misspecification and therefore inappropriate. Thus,
the monotonic interaction contrasts are definitely more powerful in
these situations. Under the conditions that favor parametric tests
(i.e., normally distributed data), the monotonic contrasts show more
power, although z]B becomes comparable around a sample size of
n=32. When data are sample form the exponential distribution, zI B
and the test of monotonic interaction are of comparable power at
n=16. When data under these simulated conditions are sample from
the uniform distribution, both tests are very powerful.

Discussion

These results demonstrate that the proposed procedure for
testing differences in a priori monotonic trends or linear trends of
ranks by testing the differences in Page’s L approximates the
commonly used unit normal and chi-square distributions, is robust to
the violations most deleterious to parametric tests (i.e., heterogeneity
of variance), and can be rather powerful under certain distributional
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conditions. Furthermore, it makes less restrictive assumptions about
the shape of th= sampled distribution and is easy’ to compute. The
results showed that as the number of treatments increase the fit of
the unit normal approximation (z]B) becomes better, but even for
three alternatives the p-value from z[R is no more than 2% different
than the proportion above the actual critical value. The
performance of this test in the 4 alternative situation was compared
to a 2 x 4 mixed design and was shown to make fewer Type I errors
than its parametric competitors when data were randomly generated
from the normal, uniform, and exponential distributions. This
nonparametric test, however, was also shown to be generally more
conservative, especially with uniformly distributed variables. In
contrast to the parametric tests, z[B iS not seemingly affected by
unequally sized samples having unequal variances. Furthermore, z]B
shows adequate power in conditions that do not favor parametric
tests (i.2., interval level data; normally distributed variables).
Specifically, when data are sampled from either the uniform of
exponential distribution, z]B is of comparable power with as few as
16 judges per group.

This extension should prove beneficial in educational research for
many reasons. First, well-planned educational research often
involves directional and a priori hypotheses about multiple
treatment effects. Secondly, applied educational research often
involves smaller samples which are unlikely to be equal in size.

Also, the dependent variables used to capture educational and
psychological phenomena mostly involve ordinal scale measurement
which with moderate sample sizes are not technically amenable to
most parametric procedures.
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Table 1. Hypothetical data for tests of ordered alternatives.
Panel A, H tical school board data
Objectives (k= S)
School
Board Member T1 T2 T3 T4 Ts
S11 1 3 2 4 5
S12 1 2 3 5 4
S13 2 1 3 4 5
S14 1 2 3 4 5
ni=4 2T1=5 ZXT=8 XT3=11 2T4=17 2T5=19

Li= 217 = (1)(5) + (2)(8) +(3)(11) + (4)(17) + (5)(19)
Panel B. Hypothetical parent data
Objectives (k= 5)

Parent T1 T2 T3 T4 Ts
Sa1 2 1 3 4 5

S» 3 4 5 1 2

S 1 5 4 3 2

S24 3 2 5 1 4
nx=4 2T1=9 ZT2=12 XT3=17 ZT4=9 XTs5=13

L2 =185 = (1)(9) + (2)(12) + (3)(17) + (4)(9) + (5)(13)
LD =(217 - 185) =32

: =_32 [_72 .
Zin = =2.26
From equation 11, Zp 55+1) 'V 4(5-1)

Panel C, Data for fifth parent.
S2s 5 4 3 2 1

L2 = 220 = (1)(14) + (2)(16) + (3)(20) + (4)(11) + (5)(14)
LB =217/4 - 220/5 = 10.25

12(10.25)

= 3.06
5(5+1) \/(5-1)(3;1%)

From equation 15, ZiB =

D
b -
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Aruitoxt provided by Eric:

Table 2. Critical Values, Actual Proportions of the Distribution, and Aipha from
the Unit Normal Approximation for k= 3

k=3
oy
3 4 ] 6
Nominal %6 Approx. 9% Approx. 9% APProx. 9% Approx.
02 Alpha CV  Dist. Alpha cv Dist.  Alpha cv Dist. Alpha Dist.  Alpha
2 .10 234 0792 0707 225 0823 0602 200 098 (910 200 0986 0833
05 267 0422 0389 250 0470 0412 240 039 0425 234 0438 0433
01 3.34 0059 0142 325 0047 0080 290 0085 Ol42 284 0085 .0139
3 10 234 0576 0433 1.84 0998 .089% 1.80 .0858 0814 .84 0795 0G5S
05 267 0202 0209 217 0470 0449 207 0478 0454 217 0337 0303
Oi 334 0031 0039 275 0087 0109 260 0093 0118 267 0063 0077
4 .10 200 0590 0455 160 096 0917 159 .0914 0828
05 225 0309 0244 190 (468 0452 1.84 0478 0446
01 275 0062 0060 240 0098 D114 234 0097 0106
5 10 1.60 0933 073 144 0988 0942
05 200 0314 0253 1.70 0478 0471
01 240 L0081 0073 220 0091 0102
6 .10 1.50 0822 0662
05 1.83 0302 0247
01 217 0080 .0080
al
7 8 9 10
2 .10 193 0974 0879 200 0805 0736 1.89 0903 0875 190 0902 .0828
05 222 0476 0508 225 0406 0442 212 0498 0562 220 0379 0446
01 272 0088 0167 275 0064 0139 262 0080 0182 260 0080 0176
3 .10 1.67 0928 0877 1.63 0937 08% 167 .0879 L0771 157 0971 0924
05 195 0453 0454 1.88 0493 0502 1.89 0489 0451 1.84 0489 0489
01 243 0093 0128 238 0094 0131 245 0068 0095 230 .0088 0135
4 .10 150 0946 0906 1.50 (973 0833 142 .1001 0955 145 .0888 0830
05 1,75 0492 0484 1.75 0494 0433 167 0500 .0499 1.6S 0502 0486
01 225 0092 0111 225 0080 0094 214 0099 0188 210 0103 0121
5 .10 140 0943 0909 135 0978 0940 131 .1000 .096S 140 0810 .0707
05 1.63 .0S00 .0492 1.60 0476 0472 156 0493 0486 1.60 .0437 0389
01 210 L00% 0107 205 0096 0110 200 0097 0112 200 0038 0098
6 .10 131 0990 0960 129 0963 0908 128 0938 0865 123 0959 0913
05 1.5 0501 0492 154 0453 0435 150 0471 0442 147 0460 0446
01 200 0102 0110 196 0097 .0103 194 0087 0091 1.87 0098 0106
7 .10 143 0719 0588 1.21 .1001 0971 1.19 0976 0948 1.16 0998 (968
05 1.57 0459 0376 145 0493 0481 140 0501 0500 1.37 0493 0491
01 200 0093 0082 1.88 0097 014 1.81 0102 0103 1.78 0100 0110
8 .10 125 0929 0771 115 0969 0934 1.13 0975 0935
05 1.50 0408 0339 1.35 0497 0499 1.33 0497 0482
01 1.88 .0091 0080 1.76 0097 0103 1.73 0096 0101
9 .10 122 0797 0668 1.08 0980 .0971
L5 144 0361 0303 128 0493 .0492
01 1.78 0087 QQ77 1.67 0099 0103
10 .10 1.10 .0968 0820
05 136 0472 .N398
01 1.70 0082 .0072
? £
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Table 3. Critical Values, Actual Proportions of the Distribution, and
Alpha from the Unit Normal Approximation for k= 4

k=4
nj
3 4 S

Nomina) 9% Approx. % Approx. 9%  Approx.
n2 Alpha CV  Dist. Alpha cv Dist.  Alpha v Dist  Alpha
2 .10 450 .0935 0876 425 0998 0887 410 0936 ,08%4
05 5.33 0437 0431 500 0479 0455 480 0455 0469

01 6.67 0087 0112 625 0097 0122 600 0088 0126

3 .10 433 0765 .0660 375 0928 0887 353 0975 .0931
05 500 0380 0339 433 0501 0498 414 0502 0499

01 6.33 0065 0072 558 .00% 0113 533 0095 0li4

4 .10 350 098 0865 325 0963 0933
05 425 0416 0367 380 0501 0497

01 550 .0067 0071 495 0093 0106

5 .10 320 0912 0797
05 3.80 0414 0374

01 480 0086 0085

ni
[ 7 8§

2 .10 400 0978 0897 393 0928 08% 3.88 0958 04855
05 4.67 0473 0477 450 0491 0519 450 0467 0486

01 5.83 0091 0133 564 0092 0148 S63 0082 0137

3 .10 350 0946 0864 333 0974 0943 325 0992 0963
05 417 0433 0412 390 0495 D500 3.83 0490 0498

01 S$17 0101 Q0114 SO0 0096 Q121 488 0099 0126

4 .10 3.17 0939 0892 300 0999 0973 300 0970 .0897
05 375 0452 0442 357 0483 D484 363 0423 0403

01 475 0098 0108 457 0101 0115 463 0081 .0089

5 .10 290 0995 0971 280 0998 0976 273 0998 .0978
05 343 0497 .0495 331 0500 0499 323 0500 0500

01 447 009 0106 431 009 0107 420 00% 0107

6 .10 283 .0992 0891 267 0987 0968 263 0951 0922
05 3.10 0393 0357 317 0487 0486 308 0487 0478

01 433 009 0093 410 0099 0108 400 0096 0103

7 .10 271 0867 078 248 0981 0966
05 314 0457 0417 293 0500 0500

01 400 0099 0095 380 Q0101 0109

8 .10 250 0913 0833
05 300 0410 0377

01 378 0097 0094

'S
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Table 4. Critical Values, Actual Proportions of the Distribution, and Alpha from
the Unit Normal Approximation for k= 3
k=%

o
3 4 5 6
Nominal % Approx. 9% Approx. 9% ApPprox. % Approx.
n2? Alpha CV Dist.  Alpha cv Dist.  Alpha cv Dist.  Alpha (0% Dist.  Alpha

2 .10 7.67 0975 0930 750 088 .0833 700 0991 .0943 683 0990 0942
05 9.00 0487 0486 875 0437 0433 820 .0498 .0500 800 0500 0500
01 11.50 00893 0118 1100 0087 0111 1040 0058 0129 1017 0093 0128

3 .10 700 045 0864 632 .1001 0972 6.13 0966 0930 600 0954 0897
05 833 0439 0412 750 0496 0495 7.20 .0493 0486 700 0492 0477
o] | 1067 0082 0090 975 0099 0114 920 0088 0112 900 0095 0109

4 .10 600 0969 0897 5.60 0989 (0950 525 0970 0933
.05 7.25 0427 0403 6.60 0501 .0491 633 0500 0497
.01 925 0084 .0089 855 0100 .0108 825 0095 0106
S .10 540 0984 0877 503 .0881 0964
05 637 0478 0430 593 0499 0488
Foll 820 0097 0095 773 0098 0106
6 .10 483 0964 0941
05 567 L0500 0497
01 750 0089 0094
oy
I i
\)‘ . o

Aruitoxt provided by Eric:



Test of normality assumptions
on Type I error rate.

0.05 =
| k=4 W s
R 7 B Fd_Linear
0.04 4" = 0410 Monotonic

Rejection Rate

Normal Uniform Exponential

Figure 1. Null hypothesis rejection rates under normal, uniform, and
exponential sampling conditions for LB, linear, and moncionic
interaction contrasts.
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Figure 3. Null hypothesis rejection rates for z| B, linear, and
monotonic interaction contrasts as a function of varinace and sample
size ratios.
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Figure 4. Power as a function of sample size and distribution.
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